Центр Креативных Технологий

Кислотно-основное состояние крови

Активная реакция крови - чрезвычайно важная го-меостатическая константа организма, обеспечивающая течение окислительно-восстановительных процессов, деятельность ферментов, направление и интенсивность всех видов обмена.

Кислотность или щелочность раствора зависит от содержания в нем свободных ионов водорода [Н+]. Количественно активная реакция крови характеризуется водородным показателем - рН {power hydrogen - "сила водорода").

Водородный показатель - отрицательный десятичный логарифм концентрации водородных ионов, т. е. pH = -lg[H+].

Символ рН и шкалу рН (от 0 до 14) ввел в 1908 г. Серенсен. Если рН равно 7,0 (нейтральная реакция среды), то содержание ионов Н+ равно 107 моль/л. Кислая реакция раствора имеет рН от 0 до 7; щелочная - от 7 до 14.

Кислота рассматривается как донор ионов водорода, основание - как их акцептор, т. е. вещество, которое может связывать ионы водорода.

Постоянство кислотно-основного состояния (КОС) поддерживается как физико-химическими (буферные системы), так и физиологическими механизмами компенсации (легкие, почки, печень, другие органы).

Буферными системами называют растворы, обладающие свойствами достаточно стойко сохранять постоянство концентрации водородных ионов как при добавлении кислот или щелочей, так и при разведении.

Буферная система - это смесь слабой кислоты с солью этой кислоты, образованной сильным основанием.

Примером может служить сопряженная кислотно-основная пара карбонатной буферной системы: Н2СО3 и NaHCO3.

В крови существует несколько буферных систем:

  1. бикарбонатная (смесь Н2СО3 и НСОз-);
  2. система гемоглобин - оксигемоглобин (оксигемоглобин имеет свойства слабой кислоты, а дезоксигемоглобин - слабого основания);
  3. белковая (обусловленная способностью белков ионизироваться); .
  4. фосфатная система (дифосфат - монофосфат).

Самой мощной является бикарбонатная буферная система - она включает 53% всей буферной емкости крови, остальные системы составляют соответственно 35% , 7% и 5% . Особое значение гемоглобинового буфера заключается в том, что кислотность гемоглобина зависит от его оксигенации, то есть газообмен кислорода потенцирует буферный эффект системы.

Исключительно высокую буферную емкость плазмы крови можно проиллюстрировать следующим примером. Если 1 мл децинормальной соляной кислоты добавить к 1 л нейтрального физиологического раствора, который не является буфером, то его рН упадет с 7,0 до 2,0. Если такое же количество соляной кислоты добавить к 1 л плазмы, то рН снизится всего с 7,4 до 7,2.

Роль почек в поддержании постоянства кислотно-основного состояния заключается в связывании или выведении ионов водорода и возвращении в кровь ионов натрия и бикарбоната. Механизмы регуляции КОС почками тесно связаны с водно-солевым обменом. Метаболическая почечная компенсация развивается гораздо медленнее дыхательной компенсации - в течение 6-12 ч.

Постоянство кислотно-основного состояния поддерживается также деятельностью печени. Большинство органических кислот в печени окисляется, а промежуточные и конечные продукты либо не имеют кислого характера, либо представляют собой летучие кислоты (углекислота), быстро удаляющиеся легкими. Молочная кислота в печени преобразуется в гликоген (животный крахмал). Большое значение имеет способность печени удалять неорганические кислоты вместе с желчью.

Выделение кислого желудочного сока и щелочных соков (панкреатического и кишечного) также имеет значение в регуляции КОС.

Огромная роль в поддержании постоянства КОС принадлежит дыханию. Через легкие в виде углекислоты выделяется 95% образующихся в организме кислых валентностей. За сутки человек выделяет около 15 000 ммоль углекислоты, следовательно, из крови исчезает примерно такое же количество ионов водорода (Н2СО3 = СО2Т + Н2О). Для сравнения: почки ежедневно экскретируют 40-60 ммоль Н+ в виде нелетучих кислот.

Количество выделяемой двуокиси углерода определяется ее концентрацией в воздухе альвеол и объемом вентиляции. Недостаточная вентиляция приводит к повышению парциального давления СО2 в альвеолярном воздухе (альвеолярная гиперкапния) и соответственно увеличению напряжения углекислого газа в артериальной крови (артериальная гиперкапния). При гипервентиляции происходят обратные изменения - развивается альвеолярная и артериальная гипокапния.

Таким образом, напряжение углекислого газа в крови (РаСО2), с одной стороны, характеризует эффективность газообмена и деятельность аппарата внешнего дыхания, с другой - является важнейшим показателем кислотно-основного состояния, его дыхательным компонентом.

Респираторные сдвиги КОС самым непосредственным образом участвуют в регуляции дыхания. Легочный механизм компенсации является чрезвычайно быстрым (коррекция изменений рН осуществляется через 1-3 мин) и очень чувствительным.

При повышении РаСО2 с 40 до 60 мм рт. ст. минутный объем дыхания возрастает от 7 до 65 л/мин. Но при слишком большом повышении РаСО2 или длительном существовании гиперкапнии наступает угнетение дыхательного центра с понижением его чувствительности к СО2.

При ряде патологических состояний регуляторные механизмы КОС (буферные системы крови, дыхательная и выделительная системы) не могут поддерживать рН на постоянном уровне. Развиваются нарушения КОС, и в зависимости от того, в какую сторону происходит сдвиг рН, выделяют ацидоз и алкалоз.

В зависимости от причины, вызвавшей смещение рН, выделяют дыхательные (респираторные) и метаболические (обменные) нарушения КОС: дыхательный ацидоз, дыхательный алкалоз, метаболический ацидоз, метаболический алкалоз.

Системы регуляции КОС стремятся ликвидировать возникшие изменения, при этом респираторные нарушения нивелируются механизмами метаболической компенсации, а метаболические нарушения компенсируются изменениями вентиляции легких.

Л. Pyдницкий

Вся информация в разделе: Методы диагностики